El equilibrio de Nash fue formulado en 1951 por el matemático norteamericano John Nash. Existe un equilibrio de Nash cuando se presenta un par de estrategias (a*, b*) en un juego de dos jugadores, en las que a* es una estrategia óptima para A frente a la estrategia b* y b* es una estrategia óptima para B frente a la estrategia a*. El equilibrio de Nash se diferencia del equilibrio de las estrategias dominantes en que, en el equilibrio de las estrategias dominantes, se exige que la estrategia de A sea óptima en el caso de todas las elecciones óptimas de B, y viceversa. El equilibrio de Nash es menos restrictivo: el equilibrio se da si A representa la mejor estrategia del jugador 1 cuando el jugador 2 juega B, y B representa la mejor estrategia de 2 cuando 1 juega A.
Si el equilibrio de Nash está presente en un juego, aún cuando uno de los jugadores revele la estrategia que uilizará, el hecho de conocerla no beneficia al otro. Esto no sucede igualmente en estrategias de no equilibrio, pues si uno de los jugadores sabe cuál será la estrategia del otro, puede beneficiarse de ese conocimiento y tomar ventaja e incluso perjudicar al otro jugador (Nicholson, 2001). Un juego puede tener más de un equilibrio de Nash así como también existen juegos en los no existe un equilibrio de Nash.
Criterios Maximín y Minimax en juegos de estrategia pura:
Estos criterios sirven para obtener la solución de un juego y determinar la estrategia óptima de un jugador:
• Criterio Maximín: Identifica los mínimos por renglón y selecciona el mayor.
• Criterio Mínimax: Identifica los máximos por columna y selecciona el menor.
Si el valor maximín del primer jugador es igual al mínimax del segundo jugador, entonces el juego es de estrategia pura (existe un punto de silla de montar). El valor del juego para el primer jugador es su valor maximín.
No hay comentarios.:
Publicar un comentario